

CCC Annual Report UIUC, August 14, 2013

Gas Flow Through Upper Tundish Nozzle Refractory and Bubble Size Evolution Inside SEN

Rui Liu and Seong-Mook Cho

Department of Mechanical Science & Engineering University of Illinois at Urbana-Champaign

OUTLINE

• PART 1: UTN porous gas flow model

- Review of previous model
- Model updates:
 - Realistic pressure distribution on UTN inner surface
 - Bubble formation threshold for gas pressure
 - One-way passing pressure boundary condition
- Effects of back pressure effects
- Effects of gas leakage at UTN bottom
- PART 2: Bubble size study in a water model
 - Bubble size distributions in SEN
 - Evolution of gas volume fraction down the SEN

Schematic and Parameters for the Base Case

Inlet pressure	P _{in}	200 kPa (abs.)	
Pressure at nozzle inside wall & ambient	P _∞	101 kPa (abs.)	
Specific permeability	K _p	10.1 nPm = 10.1 x10 ⁻⁷ mm ²	
Dynamic Viscosity*	μ	7.42 x10 ⁻⁵ Pa.s (at 1280C)	
Permeability (K_p/μ)	K _D	1.36x10 ⁻⁸ m ² /(Pa.s) (at 1280C)	
Thermal conductivity	k	18 W/mK	
Heat transfer coefficient (nozzle exterior)	h	40 W/m ² K	

Ref: *R. Dawe and E. Smith. Viscosity of Argon at High Temperatures. Science, Vol. 163, pp 675~676, 1969.

 $\mu_{0} = 2.228 \times 10^{-5} Pa \cdot s$ Metals Processing Simulation Lab $\mu_{0} = 4.228 \times 10^{-5} Pa \cdot s$ Room temperature (20 C)
argon viscosity
Rui Liu $\mu_{0} = 4.228 \times 10^{-5} Pa \cdot s$ Room temperature (20 C)
argon viscosity $\mu_{0} = 4.228 \times 10^{-5} Pa \cdot s$

4

asting

asting Consortium

Scenarios for the Base Case

Pressure Threshold for Bubble Formation

 In order for gas to intrude into the liquid and form bubbles, surface tension effects have to be considered:

Bubble expanding stage (assume bubbles expand slowly in equilibrium):

Radial Velocity Distributions

Evaluation of UTN Gas Injection — Bottom Leakage vs. Sealed

uous

DEFINE:

Gas Leakage Rate

$$\theta_{L} = 1 - \frac{\dot{m}_{in}}{\dot{m}_{total}}$$

- Possible gas leakage through UTN bottom does not affect much gas deliver through the upper slit
- An 86% gas leakage is found in current case with the complete openbottom case

Effects of Back Pressure and Sealing on Gas Radial Velocity Distributions

18

Bubbles Moving Down in the SEN

35 LPM (Water)_ 0.8 SLPM (Argon)	12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14		
35 LPM (Water)_ 1.6 SLPM (Argon)			

- Perhaps: bubbles coalesce; or else larger bubbles accumulate with time 19

Bubble Size Change Near Nozzle Exit

"35LPM (Water)_1.6SLPM (Argon)"

Bubbles smaller at the nozzle bottom

- Bubbles coalesce at the top region of nozzle port (stagnant flow region) 20

Gas Volume Fraction Evolution

- Bubble accumulation ?

tinuous Casting Consortium

- Calculating drift flux of bubble is needed to obtain gas void fraction considering argon and water superficial velocities, and bubble size.

Part 2: Conclusion Bubble Size Distribution in SEN

- Average bubble size is smaller in SEN upper regions, but larger in lower SEN regions
- Small gas bubbles appear at SEN bottom, but large bubbles are found close to SEN port upper region
- Measured gas volume fraction increases in general along the downward SEN direction, but still smaller than the superficial gas volume fraction

University of Illinois at Urbana-Champaign

Acknowledgments

Metals Processing Simulation Lab

- Continuous Casting Consortium Members (ABB, ArcelorMittal, Baosteel, Magnesita Refractories, Nippon Steel, Nucor Steel, Postech/ Posco, Severstal, SSAB, Tata Steel, ANSYS/ Fluent)
- Rob Nunnington at Magnesita

23

Seong-Mook Cho